Nuclear Decay (核衰变)

Radioactivity (放射性)

Historical Discoveries (历史发现)

  • 1895: Wilhelm Rontgen 发现 X-rays (X射线,1901年诺贝尔奖)
  • 1896: Henri Becquerel, Pierre Curie 和 Marie Curie 发现铀的放射性 (1903年诺贝尔奖)
  • 1897: Ernest Rutherford 识别 α-rays 和 β-rays (α射线与β射线,1908年诺贝尔奖)
  • 1898-99: Marie Curie 发现钋(Polonium)和镭(Radium) (1911年诺贝尔奖)
  • 1900: γ-ray (γ射线)的观测
  • 1909: Ernest Rutherford 确立α射线是氦核,β射线是电子,γ射线是光子

Fundamental Process (基本过程)

放射性衰变(Radioactive decay)是不稳定原子核自发发射辐射(能量或粒子)以达到更稳定状态的过程。主要衰变类型包括:

  • Alpha decay (α衰变)
  • Beta decay (β衰变)
  • Gamma decay (γ衰变)

示例衰变方程:

86220Rn84216Po+α{}^{220}_{86}\text{Rn} \rightarrow {}^{216}_{84}\text{Po} + \alpha

Stochastic Nature (随机性本质)

放射性衰变具有固有概率性:

  • 单个原子的确切衰变时间不可预测
  • 单位时间衰变概率由衰变常数(decay constant) λ\lambda 定义且恒定
  • 未衰变原子核没有"记忆"效应,其衰变概率始终保持不变

Decay Rate (衰变速率)

Mathematical Formulation (数学表述)

  • Decay Constant (λ\lambda, 衰变常数): 单位时间衰变概率

    dNN1dt=λdNN=λdtN=N0eλt-\frac{dN}{N} \frac{1}{dt} = \lambda \quad \Rightarrow \quad \frac{dN}{N} = -\lambda dt \quad \Rightarrow \quad N = N_0 e^{-\lambda t}

  • Half-life (T1/2T_{1/2}, 半衰期): 半数原子核衰变所需时间

    N=N02=N0eλT1/2eλT1/2=12N = \frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}} \quad \Rightarrow \quad e^{-\lambda T_{1/2}} = \frac{1}{2}

    T1/2=ln2λT_{1/2} = \frac{\ln 2}{\lambda}

  • Mean Lifetime (τ\tau, 平均寿命):

    τ=1λ\tau = \frac{1}{\lambda}

    推导过程:

    τ=1N0N00tdN=0tλNdtN0=λ0teλtdt=1λ\tau = -\frac{1}{N_0} \int_{N_0}^{0} t dN = \frac{\int_{0}^{\infty} t \lambda N dt}{N_0} = \lambda \int_{0}^{\infty} t e^{-\lambda t} dt = \frac{1}{\lambda}


Radioactive Activity (放射性活度)

Activity (AA, 活度): 单位时间衰变次数,可实验测量

A=dNdt=λNA = -\frac{dN}{dt} = \lambda N

Relationship to Half-life (与半衰期的关系)

λ=ANT1/2=ln2λ\lambda = \frac{A}{N} \quad \Rightarrow \quad T_{1/2} = \frac{\ln 2}{\lambda}

Example Calculation (示例计算)

对于 1mg1 \, \text{mg} 238U{}^{238}\text{U} 活度 A=740min1A = 740 \, \text{min}^{-1}:

  • 阿伏伽德罗常数 NA=6.023×1023mol1N_A = 6.023 \times 10^{23} \, \text{mol}^{-1}
  • 238U{}^{238}\text{U} 摩尔质量 = 238g/mol238 \, \text{g/mol}
  • 初始原子数:

    N0=0.001238×6.023×1023=2.53×1018N_0 = \frac{0.001}{238} \times 6.023 \times 10^{23} = 2.53 \times 10^{18}

  • 半衰期:

    T1/2=ln2N0A=0.693×2.53×1018740min=4.5×109yearsT_{1/2} = \frac{\ln 2 \cdot N_0}{A} = \frac{0.693 \times 2.53 \times 10^{18}}{740} \, \text{min} = 4.5 \times 10^9 \, \text{years}

  • 平均寿命:

    τ=1λ=T1/2ln26.49×109years\tau = \frac{1}{\lambda} = \frac{T_{1/2}}{\ln 2} \approx 6.49 \times 10^9 \, \text{years}


Radiocarbon Dating (放射性碳定年法)

Principles (原理)

  • 大气 14C/12C{}^{14}\text{C}/{}^{12}\text{C} 比例:1.3×10121.3 \times 10^{-12} (生物存活期间恒定)
  • 生物死亡后,14C{}^{14}\text{C}T1/2=5730T_{1/2} = 5730 年衰变;比例呈可预测性下降

Example Calculation (示例计算)

100g100 \, \text{g} 碳样品活度 A=900min1A = 900 \, \text{min}^{-1}:

  • 初始 14C{}^{14}\text{C} 原子数:

    N0=10012×6.023×1023×1.3×1012=6.52×1012N_0 = \frac{100}{12} \times 6.023 \times 10^{23} \times 1.3 \times 10^{-12} = 6.52 \times 10^{12}

  • 现存 14C{}^{14}\text{C} 原子数:

    N=AT1/2ln2=900×5730×365×24×60ln2=3.91×1012N = \frac{A T_{1/2}}{\ln 2} = \frac{900 \times 5730 \times 365 \times 24 \times 60}{\ln 2} = 3.91 \times 10^{12}

  • 样品年代:

    t=T1/2ln2ln(NN0)=5730ln2ln(3.91×10126.52×1012)=4227yearst = -\frac{T_{1/2}}{\ln 2} \ln \left( \frac{N}{N_0} \right) = -\frac{5730}{\ln 2} \ln \left( \frac{3.91 \times 10^{12}}{6.52 \times 10^{12}} \right) = 4227 \, \text{years}


Alpha Decay (α衰变)

Process (过程)

ZAXZ2A4Y+α(α=24He){}^A_Z X \rightarrow {}^{A-4}_{Z-2} Y + \alpha \quad (\alpha = {}^4_2\text{He})

Energy Conservation (能量守恒)

释放能量 QQ (产物动能):

Q=(MXMYMα)c2Q = (M_X - M_Y - M_\alpha) c^2

Momentum Conservation (动量守恒)

pY+pα=0Tα=QMYMY+Mα\vec{p}_Y + \vec{p}_\alpha = 0 \quad \Rightarrow \quad T_\alpha = Q \frac{M_Y}{M_Y + M_\alpha}

Example: 92238U90234Th+α{}^{238}_{92}\text{U} \rightarrow {}^{234}_{90}\text{Th} + \alpha

  • 质量:MU=238.050788uM_U = 238.050788 \, \text{u}, MTh=234.043601uM_{Th} = 234.043601 \, \text{u}, Mα=4.002603uM_\alpha = 4.002603 \, \text{u}
  • Q=(238.050788234.0436014.002603)×931.494MeV/u=4.27MeVQ = (238.050788 - 234.043601 - 4.002603) \times 931.494 \, \text{MeV/u} = 4.27 \, \text{MeV}
  • α粒子动能:

    Tα=4.27×234234+44.20MeVT_\alpha = 4.27 \times \frac{234}{234 + 4} \approx 4.20 \, \text{MeV}

Binding Energy Relation (结合能关系)

Q=BY+BαBXQ = B_Y + B_\alpha - B_X


Beta Decay (β衰变)

Types (类型)

  1. β⁻ Decay (β⁻衰变): np+e+νˉen \rightarrow p + e^- + \bar{\nu}_e

    ZAXZ+1AY+e+νˉe{}^A_Z X \rightarrow {}^A_{Z+1} Y + e^- + \bar{\nu}_e

    能量释放:

    Q=(MXMY)c2Q = (M_X - M_Y) c^2

  2. β⁺ Decay (β⁺衰变): pn+e++νep \rightarrow n + e^+ + \nu_e

    ZAXZ1AY+e++νe{}^A_Z X \rightarrow {}^A_{Z-1} Y + e^+ + \nu_e

    能量释放:

    Q=(MXMY2me)c2Q = (M_X - M_Y - 2m_e) c^2

  3. Electron Capture (EC, 电子俘获): p+en+νep + e^- \rightarrow n + \nu_e

    ZAX+eZ1AY+νe{}^A_Z X + e^- \rightarrow {}^A_{Z-1} Y + \nu_e

    能量释放:

    Q=(MXMY)c2Eb(Eb=被俘获电子结合能)Q = (M_X - M_Y) c^2 - E_b \quad (E_b = \text{被俘获电子结合能})

Example: 14C14N+e+νˉe{ }^{14}\text{C} \rightarrow {}^{14}\text{N} + e^- + \bar{\nu}_e

  • 质量:MC=14.003242uM_{\text{C}} = 14.003242 \, \text{u}, MN=14.003074uM_{\text{N}} = 14.003074 \, \text{u}
  • Q=(14.00324214.003074)×931.494MeV/u=156.6keVQ = (14.003242 - 14.003074) \times 931.494 \, \text{MeV/u} = 156.6 \, \text{keV}