2. 气体动力学理论 (Kinetic Theory of Gases)

2.1 系综平均与时间平均

基本问题

  • 系综平均Oens=dΓ ρO\langle O \rangle_{\text{ens}} = \int d\Gamma \ \rho O
  • 时间平均Otime=1T0TO(t)dt\langle O \rangle_{\text{time}} = \frac{1}{T} \int_0^T O(t) dt
  • 各态历经假设limTOtime=Oens\lim_{T\to\infty} \langle O \rangle_{\text{time}} = \langle O \rangle_{\text{ens}}

:各态历经性在一般情况下未被严格证明,但在大多数物理系统中近似成立

实验测量

宏观量(如压强 PP)本质上是时间平均:

P=1T0Tdt(dN(t)dt动量转移m)P = \frac{1}{T} \int_0^T dt \left( \frac{dN(t)}{dt} \cdot \frac{\text{动量转移}}{m} \right)

当系统均匀采样所有可及微观态时,系综平均与时间平均一致

2.2 BBGKY 序列方程

哈密顿量分解

考虑 NN 粒子系统:

H=i=1N[pi22m+U(ri)]+12ijV(rirj)H = \sum_{i=1}^N \left[ \frac{\vec{p}_i^2}{2m} + U(\vec{r}_i) \right] + \frac{1}{2} \sum_{i \neq j} V(\vec{r}_i - \vec{r}_j)

将系统分为两组:

  • SS 粒子子系:HS=n=1s[pn22m+U(rn)]+12nmsV(rnrm)H_S = \sum_{n=1}^s \left[ \frac{\vec{p}_n^2}{2m} + U(\vec{r}_n) \right] + \frac{1}{2} \sum_{n \neq m}^s V(\vec{r}_n - \vec{r}_m)
  • NSN-S 粒子子系:HNSH_{N-S}(类似形式)
  • 组间相互作用:H=n=1sm=s+1NV(rnrm)H' = \sum_{n=1}^s \sum_{m=s+1}^N V(\vec{r}_n - \vec{r}_m)

ss 粒子约化分布演化

fst+{fs,Hs}=n=1sdVs+1V(rnrs+1)rnfs+1pn\frac{\partial f_s}{\partial t} + \{f_s, H_s\} = \sum_{n=1}^s \int dV_{s+1} \frac{\partial V(\vec{r}_n - \vec{r}_{s+1})}{\partial \vec{r}_n} \cdot \frac{\partial f_{s+1}}{\partial \vec{p}_n}

特例:s=1s=1(单粒子分布)

f1tUr1f1p1+p1mf1r1=dv2V(q1q2)q1f2p1(1)\begin{align*} \frac{\partial f_1}{\partial t} &- \frac{\partial U}{\partial \vec{r}_1} \cdot \frac{\partial f_1}{\partial \vec{p}_1} + \frac{\vec{p}_1}{m} \cdot \frac{\partial f_1}{\partial \vec{r}_1} \\ &= \int d\vec{v}_2 \frac{\partial V(\vec{q}_1 - \vec{q}_2)}{\partial \vec{q}_1} \cdot \frac{\partial f_2}{\partial \vec{p}_1} \quad \cdots(1) \end{align*}

特例:s=2s=2(双粒子分布)

f2tV(r1r2)r1f2p1+p1mf2r1V(r1r2)r2f2p2+p2mf2r2=dv3[](2)\begin{align*} \frac{\partial f_2}{\partial t} &- \frac{\partial V(\vec{r}_1 - \vec{r}_2)}{\partial \vec{r}_1} \cdot \frac{\partial f_2}{\partial \vec{p}_1} + \frac{\vec{p}_1}{m} \cdot \frac{\partial f_2}{\partial \vec{r}_1} \\ &- \frac{\partial V(\vec{r}_1 - \vec{r}_2)}{\partial \vec{r}_2} \cdot \frac{\partial f_2}{\partial \vec{p}_2} + \frac{\vec{p}_2}{m} \cdot \frac{\partial f_2}{\partial \vec{r}_2} \\ &= \int d\vec{v}_3 \left[ \cdots \right] \quad \cdots(2) \end{align*}

2.3 时间尺度分析与近似

特征时间尺度

项类型 强度 时间尺度 物理意义
流动项 α1τstream\alpha \frac{1}{\tau_{\text{stream}}} τstreamLv\tau_{\text{stream}} \sim \frac{L}{v} 宏观尺度流动
碰撞项 α1τcoll\alpha \frac{1}{\tau_{\text{coll}}} τcolldv\tau_{\text{coll}} \sim \frac{d}{v} 微观碰撞过程
三体碰撞 α1τcoll3\alpha \frac{1}{\tau_{\text{coll3}}} τcoll31nvd2\tau_{\text{coll3}} \sim \frac{1}{n v d^2} 高阶相互作用

关键近似

  1. 稀薄气体条件nd31n d^3 \ll 1
    τcoll3τcoll\Rightarrow \tau_{\text{coll3}} \gg \tau_{\text{coll}}
    可忽略三体碰撞项,BBGKY序列闭合

  2. 局部平衡假设τcolltτrelax\tau_{\text{coll}} \ll t \ll \tau_{\text{relax}}
    双粒子分布达到局部稳态:f2t0\frac{\partial f_2}{\partial t} \approx 0

  3. 碰撞局部性
    用自由流项近似相互作用项:

    V(rirj)ripimf2ri\frac{\partial V(\vec{r}_i - \vec{r}_j)}{\partial \vec{r}_i} \approx \frac{\vec{p}_i}{m} \frac{\partial f_2}{\partial \vec{r}_i}

2.4 玻尔兹曼方程推导

碰撞积分变换

方程(1)右边转化为:

RHS(1)=dp2dΩp2p1m[f2(p1,p2,r,t)f2(p1,p2,r,t)]\text{RHS}(1) = \int d\vec{p}_2 d\Omega \frac{|\vec{p}_2 - \vec{p}_1|}{m} \cdot \left[ f_2(\vec{p}_1^\prime, \vec{p}_2^\prime, \vec{r}, t) - f_2(\vec{p}_1, \vec{p}_2, \vec{r}, t) \right]

其中 p1,p2\vec{p}_1^\prime, \vec{p}_2^\prime 由弹性碰撞守恒律确定:

{Ptot=PtotEtot=Etot\begin{cases} \vec{P}_{\text{tot}} = \vec{P}_{\text{tot}}^\prime \\ E_{\text{tot}} = E_{\text{tot}}^\prime \end{cases}

分子混沌假设 (Stosszahlansatz)

在碰撞点 r\vec{r} 附近:

f2(p1,p2,r,t)f1(p1,r,t)f1(p2,r,t)f_2(\vec{p}_1, \vec{p}_2, \vec{r}, t) \approx f_1(\vec{p}_1, \vec{r}, t) f_1(\vec{p}_2, \vec{r}, t)

玻尔兹曼方程最终形式

f1t+pmf1r+Fextf1p=dp2dΩp2p1m[f1(p1,r,t)f1(p2,r,t)f1(p1,r,t)f1(p2,r,t)]\boxed{ \begin{align*} \frac{\partial f_1}{\partial t} &+ \frac{\vec{p}}{m} \cdot \frac{\partial f_1}{\partial \vec{r}} + \vec{F}_{\text{ext}} \cdot \frac{\partial f_1}{\partial \vec{p}} \\ &= \int d\vec{p}_2 d\Omega \frac{|\vec{p}_2 - \vec{p}_1|}{m} \left[ f_1(\vec{p}_1^{\prime}, \vec{r}, t) f_1(\vec{p}_2^{\prime}, \vec{r}, t) - f_1(\vec{p}_1, \vec{r}, t) f_1(\vec{p}_2, \vec{r}, t) \right] \end{align*} }

2.5 物理意义

碰撞积分特征

  1. 局域性:仅依赖同位置 r\vec{r} 的分布
  2. 瞬时性:仅依赖同时刻 tt 的分布
  3. 分子混沌:忽略碰撞前的速度关联

适用条件

  1. 稀薄气体 (nd31n d^3 \ll 1)
  2. 尺度分离:dλmfpLd \ll \lambda_{\text{mfp}} \ll L
  3. 时间尺度分离:τcollτhydro\tau_{\text{coll}} \ll \tau_{\text{hydro}}