3.3 两能级系统 (Two-level system)

微观态描述

考虑 NN 个原子组成的系统,每个原子有两个能级:

  • 基态 g|g\rangle(能量 0)
  • 激发态 e|e\rangle(能量 ϵ\epsilon

微观态由占据数集合 {ni}\{n_i\} 指定:

ni={0第 i 个原子在基态1第 i 个原子在激发态n_i = \begin{cases} 0 & \text{第 } i \text{ 个原子在基态} \\ 1 & \text{第 } i \text{ 个原子在激发态} \end{cases}

系统总能量:

H({ni})=ϵi=1NniϵN1H(\{n_i\}) = \epsilon \sum_{i=1}^N n_i \equiv \epsilon N_1

其中 N1N_1 是激发态原子数

微正则系综

宏观态由总能量 EE 和原子数 NN 指定:

P({ni})=1Ω(E,N)δϵN1,EP(\{n_i\}) = \frac{1}{\Omega(E,N)} \delta_{\epsilon N_1, E}

态密度计算:

ϵN1=EN1=Eϵ\epsilon N_1 = E \Rightarrow N_1 = \frac{E}{\epsilon}

Ω(E,N)=(NN1)=N!(NN1)!N1!\Omega(E,N) = \binom{N}{N_1} = \frac{N!}{(N-N_1)! N_1!}

熵与温度

熵:

S(E,N)=kBlnΩ(E,N)NkB[N1NlnN1N+NN1NlnNN1N]S(E,N) = k_B \ln \Omega(E,N) \approx -N k_B \left[ \frac{N_1}{N} \ln \frac{N_1}{N} + \frac{N-N_1}{N} \ln \frac{N-N_1}{N} \right]

使用斯特林公式 lnN!NlnNN\ln N! \approx N \ln N - N

温度:

1T=SEN=kBϵln(ENϵE)\frac{1}{T} = \left. \frac{\partial S}{\partial E} \right|_N = -\frac{k_B}{\epsilon} \ln \left( \frac{E}{N\epsilon - E} \right)

负温度现象:当 E>Nϵ2E > \frac{N\epsilon}{2} 时,T<0T < 0,对应于粒子数反转状态


3.4 理想气体 (The ideal gas)

微观态描述

NN 个无相互作用的粒子:

μ{qi,pi}i=1N\mu \equiv \{ \vec{q}_i, \vec{p}_i \}_{i=1}^N

哈密顿量:

H=i=1N[pi22m+V(qi)]H = \sum_{i=1}^N \left[ \frac{\vec{p}_i^2}{2m} + V(\vec{q}_i) \right]

其中 V(qi)V(\vec{q}_i) 是容器势能(体积 VV

微正则系综

相空间体积:

Ω(E,V,N)=i=1Nd3qid3piδ(i=1Npi22mE)Θ(粒子在容器内)\Omega(E,V,N) = \int \prod_{i=1}^N d^3\vec{q}_i d^3\vec{p}_i \delta \left( \sum_{i=1}^N \frac{\vec{p}_i^2}{2m} - E \right) \Theta(\text{粒子在容器内})

数学处理:

  1. 坐标积分 VN\rightarrow V^N
  2. 动量空间:3N3N 维球面(半径 R=2mER = \sqrt{2mE}
  3. dd 维球面积公式:Ad=SdRd1A_d = S_d R^{d-1}
  4. 态密度:

Ω(E,V,N)=VNS3N(2π)3N(2mE)(3N1)/2\Omega(E,V,N) = \frac{V^N S_{3N}}{(2\pi\hbar)^{3N}} (2mE)^{(3N-1)/2}

熵与物态方程

熵:

S(E,V,N)=kBlnΩNkB[ln(V(4πemE3N)3/2)]S(E,V,N) = k_B \ln \Omega \approx N k_B \left[ \ln \left( V \left( \frac{4\pi e m E}{3N} \right)^{3/2} \right) \right]

温度与压强:

1T=SEV,N=3NkB2EE=32NkBT\frac{1}{T} = \left. \frac{\partial S}{\partial E} \right|_{V,N} = \frac{3N k_B}{2E} \Rightarrow E = \frac{3}{2} N k_B T

PT=SVE,N=NkBVPV=NkBT\frac{P}{T} = \left. \frac{\partial S}{\partial V} \right|_{E,N} = \frac{N k_B}{V} \Rightarrow PV = N k_B T

麦克斯韦-玻尔兹曼分布

单粒子动量分布:

P(p1)=i=2Nd3qid3piP(μ)=Ω(Ep122m,V,N1)Ω(E,V,N)P(\vec{p}_1) = \int \prod_{i=2}^N d^3\vec{q}_i d^3\vec{p}_i P(\mu) = \frac{\Omega(E - \frac{p_1^2}{2m}, V, N-1)}{\Omega(E,V,N)}

热力学极限 (NN \to \infty):

P(p1)=(12πmkBT)3/2ep122mkBTP(\vec{p}_1) = \left( \frac{1}{2\pi m k_B T} \right)^{3/2} e^{-\frac{\vec{p}_1^2}{2m k_B T}}


3.5 混合熵与吉布斯悖论 (Mixing entropy and Gibbs paradox)

熵的非广延性问题

理想气体熵:

S(E,N,V)=NkBln[V(4πemE3N)3/2]S(E,N,V) = N k_B \ln \left[ V \left( \frac{4\pi e m E}{3N} \right)^{3/2} \right]

尺度变换 (λ\lambda 倍):

S(λE,λN,λV)=λS(E,N,V)+NkBlnλS(\lambda E, \lambda N, \lambda V) = \lambda S(E,N,V) + N k_B \ln \lambda

第二项破坏广延性(吉布斯悖论核心)

混合熵计算

初始状态(同温同压):

气体粒子数体积1N1V12N2V2\begin{array}{c|c|c} \text{气体} & \text{粒子数} & \text{体积} \\ \hline 1 & N_1 & V_1 \\ 2 & N_2 & V_2 \\ \end{array}

初始熵:

Si=S1+S2=N1kB(lnV1+σ1)+N2kB(lnV2+σ2)S_i = S_1 + S_2 = N_1 k_B (\ln V_1 + \sigma_1) + N_2 k_B (\ln V_2 + \sigma_2)

σα=32ln(4πemαkBT3)\sigma_\alpha = \frac{3}{2} \ln \left( \frac{4\pi e m_\alpha k_B T}{3} \right)

混合后状态:

V=V1+V2,Tf=T,E=E1+E2V = V_1 + V_2, \quad T_f = T, \quad E = E_1 + E_2

最终熵:

Sf=(N1+N2)kB(lnV+σ)S_f = (N_1 + N_2) k_B (\ln V + \sigma)

混合熵变:

ΔSmix=SfSi=kB[N1lnVV1+N2lnVV2]\Delta S_{\text{mix}} = S_f - S_i = k_B \left[ N_1 \ln \frac{V}{V_1} + N_2 \ln \frac{V}{V_2} \right]

吉布斯修正

全同粒子修正:

Scorr=kBln(NNkB(lnN1)S_{\text{corr}} = k_B \ln (N \approx N k_B (\ln N - 1)

修正后熵:

S=NkB[ln(eVN)+σ]S = N k_B \left[ \ln \left( \frac{e V}{N} \right) + \sigma \right]

全同气体混合:
N1V1=N2V2=N1+N2V1+V2\frac{N_1}{V_1} = \frac{N_2}{V_2} = \frac{N_1+N_2}{V_1+V_2}

ΔSmix=0\Delta S_{\text{mix}} = 0

符合热力学预期


正则系综 (Canonical ensemble)

基本形式

概率密度:

P(μ)=eβH(μ)Z(T,V,N),β=1kBTP(\mu) = \frac{e^{-\beta H(\mu)}}{Z(T, V, N)}, \quad \beta = \frac{1}{k_B T}

配分函数:

Z(T,V,N)=μeβH(μ)Z(T, V, N) = \sum_{\mu} e^{-\beta H(\mu)}

热力学量

亥姆霍兹自由能:

F(T,V,N)=kBTlnZF(T, V, N) = -k_B T \ln Z

内能:

H=βlnZ=β(βF)\langle H \rangle = -\frac{\partial}{\partial \beta} \ln Z = \frac{\partial}{\partial \beta} (\beta F)

熵:

S=FTV,NS = -\left. \frac{\partial F}{\partial T} \right|_{V,N}

能量涨落:

(ΔH)2=H2H2=kBT2CV\langle (\Delta H)^2 \rangle = \langle H^2 \rangle - \langle H \rangle^2 = k_B T^2 C_V

(ΔH)2H1N0(N)\frac{\sqrt{\langle (\Delta H)^2 \rangle}}{\langle H \rangle} \sim \frac{1}{\sqrt{N}} \to 0 \quad (N \to \infty)

与微正则系综等价性

在热力学极限下:

  • 最概然能量 EE^* 与平均能量 H\langle H \rangle 重合
  • 正则系综与微正则系综等价